研究人員報告了一種合成取代benzotriazin-4(3H)-ones的新方案,該酮是具有重要藥理學特性的代表性不足的雜環支架。研究人員利用無環芳基三嗪前體,在暴露于紫光(420 nm)時發生光環化反應。 利用連續流反應器技術,只需 10 分鐘的停留時間即可獲得優異的產率,且無需任何添加劑或光催化劑。 潛在的反應機制似乎是基于經典Norrish II 型反應,并伴隨著斷裂和 N-N 鍵的形成。
2024-03-19
卟啉光催化劑存在下,在間歇式和微反應器中對這些化合物并行進行光化學轉化,顯示了流動光化學在生產率、選擇性和產率方面的顯著優勢。 本研究通過比較白藜蘆醇類似物的光催化和直接照射(光解)產物,闡明產物的類型和比例如何取決于激發能,揭示取代基對光誘導反應的影響,并通過實驗合理化 并計算所得產品的性質和比例。
2024-01-02
亞硝基芳烴是多功能的有機砌塊,研究人員提出了一種新的流向這些實體的連續流動路線。這種方法成功的關鍵是使用三氟乙醇作為溶劑,使用高功率發光二極管(365 nm)作為光源,提供均勻的照射和高效率的連續流動方法。該工藝快速而穩健,具有高官能團耐受性和高通量。亞硝基部分的形成得到了包括X射線晶體學在內的全光譜分析的支持。這種流動方法的可擴展性允許獲得克量的亞硝基物質,為此我們重點介紹了一小組衍生化反應,強調了它們的合成效用。
2023-12-25
研究人員已經開發出一種在連續流動條件下 2-氮雜環丁烷的抗馬爾可夫尼科夫氫烷基/芳基硫醇化(anti-Markovnikov hydroalkyl/aryl thiolation)和二硫化的策略。 硫基自由基由硫醇或二硫化物產生,隨后傳播到氮雜環丁烷不飽和度中,形成 C-S 鍵并形成二級自由基中間體。 這個以碳為中心的自由基鏈通過氫原子轉移(HAT)或另一個二硫化物轉移到另一個硫醇上,以重新生成關鍵的硫基自由基中間體。 流動技術的使用確保了反應混合物的有效照射,從而實現極快、穩健且可擴展的方案。 此外,采用乙酸乙酯作為對環境負責的溶劑。
2023-09-18
研究人員已經開發出一種穩健的連續流動工藝,用于多種伯醇和仲醇的選擇性氧化。 該過程使用催化量的TEMPO以及 NaBr/NaOCl 作為簡單且經濟高效的氧化劑系統。 在整個研究中,對停留時間、反應器類型和溫度等關鍵參數進行了評估,以獲得有效的反應條件,從而在較短的停留時間內以高化學產率生產各種醛和酮。 一項探索性研究還展示了將基于流動的氧化與連續萃取分離相結合的可行性,方法是將環丁酮轉化為其亞硫酸氫鹽加合物,從而允許與剩余起始材料和其他產品進行相分離。 此外,通過使用相同的流程設置進行多克規模的反應來試驗工藝的適用性和可擴展性。 這樣可以連續氧化50克苯丙氨酸(Phenprobamate),并放大三氟甲基化惡唑結構單元和 HIV 藥物馬拉維若(maraviroc)的前體。
2023-09-13
利用連續流技術的優勢,通過未充分利用的Baldwin重排,開發了一種連續流合成氮丙啶(aziridines)的方法,在5-10分鐘的停留時間內,得到了比相應的間歇工藝更高的收率、非對映選擇性和吞吐量,具有更大的官能團耐受性的氮丙啶(aziridines)庫。所選擇的溶劑(即MeCN)起著至關重要的作用,因為它允許持續高的非對異選擇性,并且能夠將反應混合物過熱(高于大氣沸點約50°C),從而實現更快的反應速率、更高的收率和最小化的產物分解,這是該流動過程的特征。
2023-09-12
1. 簡介流動化學是合成有機化學中的一門學科,它使用不同試劑的連續流,這些試劑通過泵引入并在連續反應器中混合,例如活塞流反應器 (PFR) 或連續攪拌釜反應器 (CSTR)。與通常在圓底燒瓶中進行的傳統批量處理相比,它具有多種優勢,例如增強傳質和傳熱、提高安全性、提高反應效率、減少浪費、更好的可擴展性和提高的再現性。因此,流動化學可以精確控制反應條件,并能夠實時監測和分析反應動力學,從而產生高質量
2023-09-01