多重耐藥細菌菌株(MDR)已成為我們衛生系統面臨的日益嚴峻的挑戰,導致多種經典抗生素今天在臨床上無活性。由于從頭開發有效抗生素是一個非常昂貴和耗時的過程,因此篩選天然和合成化合物庫等替代策略是尋找新先導化合物的簡單方法。因此,我們報告了對以吲唑、吡唑和吡唑啉為關鍵雜環部分的十四種藥物樣化合物的抗菌評估,這些化合物的合成是在連續流動模式下實現的。研究發現,幾種化合物對葡萄球菌屬和腸球菌屬的臨床和MD
2023-08-08
一種新的光化學流動工藝,可以高產率和高通量地生成苯炔前體,并且可以輕松分離出數克數量的產品。 該過程利用光激發硝基芳烴進行無催化劑光化學重排,其中涉及已完全表征的環狀羥胺中間體。 所得前體通過第二個光化學流動過程轉化為苯炔,在用疊氮化物和苯乙烯配合物捕獲時產生雜環目標。 值得注意的是,當苯炔前體與仲胺反應時,通過第三次光流轉化以良好的產率獲得了多種芳基三嗪。 這代表了合成這些物質的模塊化方法,避免使用具有潛在爆炸性的重氮鹽。 最終,與批量處理相比,使用單個高功率 LED 光源(365?nm,可調節輸入功率)的三種光化學流程具有明顯的優勢。
2023-08-07
光化學最近引起了研究人員的極大關注。第一個原因是使用連續流動反應器,它在處理這種光化學反應時提供了很大程度的操作靈活性。第二個原因是反應可以以高度選擇性和溫和的方式進行(室溫、可見光和避免有毒化學品)。在這種情況下,流動和光化學的結合是近年來成功采用的一種優秀方法。
2022-12-15
活性藥物成分 (API) 是藥物產品中具有生物活性的任何物質。這意味著特定的分子實體能夠對目標產生特定的生物學效應。這些成分需要滿足非常嚴格的限制;化學和光學純度被認為是最重要的。利用連續流動的反應流體流的連續流動合成方法可以很容易地與光化學相結合,光化學與光的化學效應一起工作。這些方法可以成為滿足這些嚴格限制的有用工具。這兩種方法都是在溫和條件下制備具有高度結構復雜性的天然產物或活性藥物成分及其前體的獨特而強大的工具。
2022-12-14
提出了一種連續流動工藝,該工藝能夠在光化學條件下安全地生成和衍生苯。 新的大功率 LED 燈發出 365 nm 的光,這有助于實現這一目標。 由此產生的流動過程基于可調節背壓調節器有效控制氣態副產品的釋放,并在 3 分鐘的短停留時間內提供一系列雜環產品。 該方法的穩健性在benzotriazoles, 2H-indazoles 和各種呋喃衍生加合物的快速生成中得到證明,通過簡單且易于擴展的流動協議促進這些重要的雜環支架的制備。
2022-09-05
自由基陽離子引發的富電子烯烴二聚反應是合成環丁烷的一種便捷方法。 通過將有機光氧化還原催化和連續流動技術相結合,進行了分批與連續流動研究,為生成重要的咔唑環丁烷材料二聚體 1,2-反式-二咔唑環丁烷 (t-DCzCB) 提供了一條方便的合成路線,僅使用 0.1?mol?% 的有機光氧化還原劑 催化劑。 探索了該方法的范圍,提供了一類新的功能材料,以及苯乙烯基木脂素二聚天然產物的改進合成路線。 在連續流動條件下,可以以更高的化學產率分離環丁烷二聚體,并且與傳統的間歇反應條件相比,反應時間顯著縮短。
2022-09-01
使用小型連續流動系統可以有效利用高反應性中間體。 通過將高質量和熱傳遞相結合,除了提高光化學反應的效率外,流動化學還提供了獲得以前未描述的反應性的途徑。 這提供了進入以前無法獲得的化學空間并加速發現新反應的機會。 雖然本文描述的一些領域仍然不發達,特別是氮烯的使用,但流動方法的發展可能會加速它們的廣泛使用并推動該領域的新創新。
2022-06-17
可見光光催化已成為有機合成中的強大工具,它使用光子作為無痕、可持續的試劑。該領域的大多數活動都集中在通過常見的光氧化還原開發新反應,但最近一些令人興奮的新概念和策略進入了鮮為人知的領域。我們調查了能夠使用更長波長的方法,并表明光子的波長和強度是重要參數,可以調節光催化劑的反應性以控制或改變化學反應的選擇性。此外,我們討論了最近替代強還原劑的努力,如元素鋰和鈉,通過光和技術領域的進步。
2022-04-19